Comparative Lipid Profiling of the Cnidarian Aiptasia pallida and Its Dinoflagellate Symbiont
نویسندگان
چکیده
Corals and other cnidarians house photosynthetic dinoflagellate symbionts within membrane-bound compartments inside gastrodermal cells. Nutritional interchanges between the partners produce carbohydrates and lipids for metabolism, growth, energy stores, and cellular structures. Although lipids play a central role in the both the energetics and the structural/morphological features of the symbiosis, previous research has primarily focused on the fatty acid and neutral lipid composition of the host and symbiont. In this study we conducted a mass spectrometry-based survey of the lipidomic changes associated with symbiosis in the sea anemone Aiptasia pallida, an important model system for coral symbiosis. Lipid extracts from A. pallida in and out of symbiosis with its symbiont Symbiodinium were prepared and analyzed using negative-ion electrospray ionization quadrupole time-of-flight mass spectrometry. Through this analysis we have identified, by exact mass and collision-induced dissociation mass spectrometry (MS/MS), several classes of glycerophospholipids in A. pallida. Several molecular species of di-acyl phosphatidylinositol and phosphatidylserine as well as 1-alkyl, 2-acyl phosphatidylethanolamine (PE) and phosphatidycholine were identified. The 1-alkyl, 2-acyl PEs are acid sensitive suggestive that they are plasmalogen PEs possessing a double bond at the 1-position of the alkyl linked chain. In addition, we identified several molecular species of phosphonosphingolipids called ceramide aminoethylphosphonates in anemone lipid extracts by the release of a characteristic negative product ion at m/z 124.014 during MS/MS analysis. Sulfoquinovosyldiacylglycerol (SQDG), an anionic lipid often found in photosynthetic organisms, was identified as a prominent component of Symbiodinium lipid extracts. A comparison of anemone lipid profiles revealed a subset of lipids that show dramatic differences in abundance when anemones are in the symbiotic state as compared to the non-symbiotic state. The data generated in this analysis will serve as a resource to further investigate the role of lipids in symbiosis between Symbiodinium and A. pallida.
منابع مشابه
A diverse host thrombospondin-type-1 repeat protein repertoire promotes symbiont colonization during establishment of cnidarian-dinoflagellate symbiosis
The mutualistic endosymbiosis between cnidarians and dinoflagellates is mediated by complex inter-partner signaling events, where the host cnidarian innate immune system plays a crucial role in recognition and regulation of symbionts. To date, little is known about the diversity of thrombospondin-type-1 repeat (TSR) domain proteins in basal metazoans or their potential role in regulation of cni...
متن کاملRegulation of cnidarian-dinoflagellate mutualisms: Evidence that activation of a host TGFβ innate immune pathway promotes tolerance of the symbiont.
Animals must manage interactions with beneficial as well as detrimental microbes. Immunity therefore includes strategies for both resistance to and tolerance of microbial invaders. Transforming growth factor beta (TGFβ) cytokines have many functions in animals including a tolerance-promoting (tolerogenic) role in immunity in vertebrates. TGFβ pathways are present in basal metazoans such as cnid...
متن کاملSymbiont type influences trophic plasticity of a model cnidarian-dinoflagellate symbiosis.
The association between cnidarians and photosynthetic dinoflagellates within the genus Symbiodinium is a prevalent relationship in tropical and subtropical marine environments. Although the diversity of Symbiodinium provides a possible axis for niche diversification, increased functional range and resilience to physical stressors such as elevated temperature, how such diversity relates to the p...
متن کاملThe scavenger receptor repertoire in six cnidarian species and its putative role in cnidarian-dinoflagellate symbiosis
Many cnidarians engage in a mutualism with endosymbiotic photosynthetic dinoflagellates that forms the basis of the coral reef ecosystem. Interpartner interaction and regulation includes involvement of the host innate immune system. Basal metazoans, including cnidarians have diverse and complex innate immune repertoires that are just beginning to be described. Scavenger receptors (SR) are a div...
متن کاملThe Role of Complement in Cnidarian-Dinoflagellate Symbiosis and Immune Challenge in the Sea Anemone Aiptasia pallida
The complement system is an innate immune pathway that in vertebrates, is responsible for initial recognition and ultimately phagocytosis and destruction of microbes. Several complement molecules including C3, Factor B, and mannose binding lectin associated serine proteases (MASP) have been characterized in invertebrates and while most studies have focused on their conserved role in defense aga...
متن کامل